

研究背景
问题分析
模型建立与求解
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
差分运算
ARIMA模型
序列平稳性检验
单位根检验
|
|
|
|
|
|
|
|
一阶差分
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
模型定阶
ARIMA模型预测
|
|
|
|
|
|
|
|
|
|
|
|
ARIMA模型程序:library(forecast)library(fUnitRoots)Data <- read.csv("C:/Users/27342/Desktop/arima_data.csv", header = TRUE)[, 2]sales <- ts(Data)plot.ts(sales, xlab = "时间", ylab = "销量 / 元")# 单位根检验unitrootTest(sales)# 自相关图acf(sales)# 一阶差分difsales <- diff(sales)plot.ts(difsales, xlab = "时间", ylab = "销量残差 / 元")# 自相关图acf(difsales)# 单位根检验unitrootTest(difsales)# 白噪声检验Box.test(difsales, type="Ljung-Box")# 偏自相关图pacf(difsales)# ARIMA(1,1,0)模型arima <- arima(sales, order = c(1, 1, 0))arimaforecast <- forecast(arima, h = 5, level = c(99.5))forecast

