
以下作品由安信可社区用户
lclight制作
之前笔者用Ai-M61点亮了屏幕,并显示了图片(教程在这里:M61 gpio模拟i2c 点亮0.96寸屏幕),这次准备在屏幕上显示动画,制作会走路的小人以及会动的背景~
先看效果(如图),由于视频太大,转成gif后文件也过大,只能缩小分辨率、帧数和时长了,原动画是不断绕地图一周。
上一次教程在屏幕上画了一张图,但它是静态的,如果想做点有趣的东西,那动画也是基础,必不可少,所以这次来学画动画。
像电影一样,一系列不同的“画面”连续播放就形成了动画。而创造不同“画面”一般有两种方式,一种是画面本身不同,另一种是画面里面的东西在动。想象一下这个画面,角色从迷宫左上角走到右下角。
第一种:有4张不同的图,逐次播放,称为帧动画。
第二种:有一张背景和主角,每次播放时,背景直接画,角色画在不同的位置,这样的角色称为精灵(精灵本身也可以有帧动画)。
显然需要角色从迷宫左上角走到右下角,第二种更适合,实际应用中需两种结合来使用。最典型的例子比如RPG动画里面,角色精灵移动时的左右脚迈步动画就是帧动画,精灵则是画在地图中的不同位置。
那其实就很简单了,每一帧都是先在屏幕画出背景,再在指定位置画上角色,如果角色可操控,那只需要用中断改变其位置。
貌似很容易实现,但这时又想到了个问题,图片没有透明信息。
如果精灵的图片直接覆盖画上去,会有个矩形白边,如图1。
如果是用“位或”的方式画(暂且不论能不能实现),则连精灵都看不到了,如图2。
而想要的效果是最后的效果,部分覆盖,部分透明,如图3。
这个问题最经典的解决方案就是用遮罩,遮罩如图1。先用遮罩“位与运算”图1,得到图2,再用精灵“位或运算”图2,得到最终结果图3。
或者就是只画黑色的部分,白色的部分直接忽略不画。
为了实现或绘图的图片能进行或运算,也为了能提高性能,得换种画图方式。
原来的方式是直接在屏幕上逐个绘制图像,那改为把所有精灵图像逐个画在画板上,画完之后再把画板贴到屏幕上。
可以理解画板是内存数据,操作内存肯定比i2c的画到屏幕快得多,原来要画多个图像,现在合并成了只画一次。而最关键的是内存操作可以进行位运算。
那么接下来简单说下位运算,以上个教程画的大道寺知世为例:
const uint8_t picture_tab[]={
0x1,0x2,0x4,0x8,0xF0,0xA0,0x0,0x10,0x10,0x10,0x8,0x8,0x8,0x18,0x10,0x11,
图像的数据逐个改为二进制,比如 0x1 = 00000001,0x2 = 00000010,...,0x11 = 00010001,共16个uint8_t,从左到右的每一竖列,在1的位置涂黑,就得到了下图的0~15列。
把图片数据全部画完,就得到下图
那么图像合并就很明显了,当两张图像使用“或运算”时,只要相同位置有一个是涂黑的,就涂黑。
就像这样,把左下角的精灵贴到背景上,背景就是知世。
另外一个难点,就是绘制时是8位一起,所以当精灵在竖轴的坐标不是8的整倍数时,需要跨越两个page绘制,处理起来麻烦,但不是无法处理,就直接看代码了。
这次代码分为3个文件了。main、spirit和resources
main.c
/*** @file main.c* @author lclight* @brief* @version 0.1* @date 2023-11-26** @copyright Copyright (c) 2023**/// 头文件,为省事直接写了一大堆// 选择支持i2c的两个针脚,接线也要按这个来接// sleep函数,封装一层,方便修改// 因为精度不够,这里用1太耗时,改为0比较合适,用usleep同样不行struct bflb_device_s *gpio;// 从机地址,从手册或者卖家给的例子中获得,如果没有,甚至可以用for从0~127逐个初始化再确定是哪个uint8_t addr = 0x78;// i2c协议的开始位void i2c_start(){bflb_gpio_set(gpio, SDA);waittime(1);bflb_gpio_set(gpio, SCL);waittime(1);bflb_gpio_reset(gpio, SDA);waittime(1);bflb_gpio_reset(gpio, SCL);}// i2c协议的结束位void i2c_stop(){bflb_gpio_reset(gpio, SDA);waittime(1);bflb_gpio_set(gpio, SCL);waittime(1);bflb_gpio_set(gpio, SDA);}// i2c协议发送一个字节void send_byte(uint8_t dat){uint8_t i;for (i = 0; i<8; i++){if (dat & 0x80){bflb_gpio_set(gpio, SDA);}else{bflb_gpio_reset(gpio, SDA);}waittime(1);bflb_gpio_set(gpio, SCL);waittime(1);bflb_gpio_reset(gpio, SCL);waittime(1);dat <<= 1;}bflb_gpio_set(gpio, SDA);waittime(1);bflb_gpio_set(gpio, SCL);waittime(1);bflb_gpio_reset(gpio, SCL);waittime(1);}// 发送一帧数据void oled_wr_byte(uint8_t dat, uint8_t mode){i2c_start();send_byte(addr);mode ? send_byte(0x40) : send_byte(0x00);send_byte(dat);i2c_stop();}// 发送一帧命令数据void oled_cmd(uint8_t cmd){// printf("cmd:%d\r\n", cmd);oled_wr_byte(cmd, 0);}// 发送一帧Data数据void oled_data(uint8_t dat){oled_wr_byte(dat, 1);}// 发送定位到页的命令void page_set(uint8_t page){oled_cmd(0xb0 + page);}// 发送定位到列的命令void column_set(uint8_t col){oled_cmd(0x10 | (col >> 4));oled_cmd(0x00 | (col & 0x0f));}// 清屏,就是把填满数据0void oled_clear(){uint8_t page,col;for (page = 0; page < 8; ++page){page_set(page);column_set(0);for (col = 0; col < 128; ++col){oled_data(0x00);}}}// 清屏,就是把填满数据1void oled_full(){uint8_t page,col;for (page = 0; page < 8; ++page){page_set(page);column_set(0);for (col = 0; col < 128; ++col){oled_data(0xff);}}}// 显示图片void oled_display(const uint8_t *ptr_pic){uint8_t page,col;for (page = 0; page < 8; ++page){page_set(page);column_set(0);for (col = 0; col < 128; ++col){oled_data(*ptr_pic++);}}}// 显示图片,1和0反转,就是反色void oled_display_r(const uint8_t *ptr_pic){uint8_t page,col,data;for (page = 0; page < 8; ++page){page_set(page);column_set(0);for (col = 0; col < 128; ++col){data=*ptr_pic++;data=~data;oled_data(data);}}}// 刷新,即时把内存的图像画到屏幕上// 由于实际上黑底白线比较好看,所以用反色画void refresh(){uint8_t page,col,data;dc = dc0;for (page = 0; page < 8; ++page){page_set(page);column_set(0);for (col = 0; col < 128; ++col){data=*dc++;data=~data;oled_data(data);}}}// 初始化,点亮屏幕,按手册执行一些列命令即可,有些命令不是必要的void init_display(){uint8_t cmds[25] ={0xAE,//关闭显示0xD5,//设置时钟分频因子,震荡频率0x80, //[3:0],分频因子;[7:4],震荡频率0xA8,//设置驱动路数0X3F,//默认0X3F(1/64)0xD3,//设置显示偏移0X00,//默认为00x40,//设置显示开始行 [5:0],行数.0x8D,//电荷泵设置0x14,//bit2,开启/关闭0x20,//设置内存地址模式0x02,//[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10;0xA1,//段重定义设置,bit0:0,0->0;1,0->127;0xC8,//设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数0xDA,//设置COM硬件引脚配置0x12,//[5:4]配置0x81,//对比度设置0xEF,//1~255;默认0X7F (亮度设置,越大越亮)0xD9,//设置预充电周期0xf1,//[3:0],PHASE 1;[7:4],PHASE 2;0xDB,//设置VCOMH 电压倍率0x30,//[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc;0xA4,//全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏)0xA6,//设置显示方式;bit0:1,反相显示;0,正常显示0xAF,//开启显示};uint8_t i;for (i = 0; i < 25; ++i){oled_cmd(cmds[i]);}sleep(1);}void led_run(void* param){// 创建我们操控的主角,称为英雄uint8_t heroWalkImg1[] = HERO_IMG1;uint8_t heroWalkImg2[] = HERO_IMG2;uint8_t heroMask[] = HERO_MASK;struct frameImg heroFrames[2] = {// 脚不用覆盖,所以可以共用一个遮罩{8, 16, heroWalkImg1, heroMask},{8, 16, heroWalkImg2, heroMask}};//默认左上角{0,0},默认第一帧,总共2帧,当前状态1struct spirit hero = {0,0, 1,2, SPIRIT_STATE_SHOW, heroFrames};//uint8_t tmpDir = 0; // 方向,走路demo用到gpio = bflb_device_get_by_name("gpio");/* I2C0_SDA */bflb_gpio_init(gpio, SDA, GPIO_OUTPUT | GPIO_PULLUP);/* I2C0_SCL */bflb_gpio_init(gpio, SCL, GPIO_OUTPUT | GPIO_PULLUP);bflb_gpio_init(gpio, GPIO_PIN_18, GPIO_INPUT | GPIO_FLOAT | GPIO_SMT_EN | GPIO_DRV_0);bflb_gpio_init(gpio, GPIO_PIN_14, GPIO_OUTPUT | GPIO_FLOAT | GPIO_SMT_EN | GPIO_DRV_1);// 初始化,点亮屏幕// 图片轮播init_display();oled_full();sleep(3);while (true){clean();// 背景也是一个精灵,静态创建即可draw(&bg);draw(&hero);refresh();// vTaskDelay(1);// 让小人绕屏幕一圈switch (tmpDir){case 0:if (hero.px<110){move(&hero, 1, 0);}else{if (bg.px>-72){move(&bg, -1, 0);}else{tmpDir++;}}break;case 1:if (hero.py<52){move(&hero, 0, 1);printf("hero.py:%d\r\n", hero.py);}else{tmpDir++;}break;case 2:if (hero.px>10){move(&hero, -1, 0);}else{if (bg.px<0){move(&bg, 1, 0);}else{tmpDir++;}}break;case 3:if (hero.py>0){move(&hero, 0, -1);}else{tmpDir=0;}break;}// 小人切换走路动画帧nextFrame(&hero);}}int main(void){board_init();xTaskCreate(led_run, (char*)"led_run", 1024*4, NULL, 1, NULL);vTaskStartScheduler();}
文件名:spirit.h
struct frameImg{uint8_t w; // 1~Nuint8_t h; // 1~N,一定是8的整数倍uint8_t *img;uint8_t *mask;};struct spirit{short px; // -N~Nshort py; // -N~Nuint8_t curFrame;uint8_t maxFrame;uint8_t state; // 精灵当前状态,0是正常,1是隐身struct frameImg *frames;};// 背景,实际上也是精灵uint8_t bgImg[] = BG_IMG;struct frameImg bgFrame[] = {{200, 64, bgImg, NULL}};struct spirit bg = {0,0, 1,1, SPIRIT_STATE_SHOW, bgFrame};// 先把背景和所有精灵都画到dc上,再画到屏幕uint8_t dc0[1024];uint8_t *dc;// 让精灵进入下一帧uint8_t nextFrame(struct spirit * sp){sp->curFrame ++;if (sp->curFrame > sp->maxFrame){sp->curFrame = 1;}return sp->curFrame;}// 让精灵进入指定帧uint8_t frame(struct spirit * sp, uint8_t tarFrame){sp->curFrame = tarFrame;if (sp->curFrame > sp->maxFrame){sp->curFrame = 1;}return sp->curFrame;}// 让精灵移动,注意需要支持负数void move(struct spirit * sp, short opx, short opy){sp->px +=opx;sp->py +=opy;}void draw(struct spirit * sp){short spCol,spLine,spPage,spIdx,dcCol,dcLine,dcIdx,dcNIdx,dcPage,offset;if (sp->state != SPIRIT_STATE_HIDE){// 取出要画的那一帧struct frameImg * spFrame = & sp->frames[sp->curFrame-1];// 两个for从上到下,从左到右,把精灵绘制到内存上for (spCol = 0; spCol < spFrame->w; ++spCol){// 1个像素算一行,每个列有8个像素for (spLine = 0; spLine < spFrame->h; spLine+=8){// 计算出当前绘制到哪里 (page*8)-coldcLine = sp->py+spLine; dcCol = sp->px+spCol;// 超出屏幕范围的不画if (dcLine>=0 && dcLine < 64 && dcCol>=0 && dcCol < 128){// 分别是绘制位置的page和精灵的pagedcPage = dcLine/8;spPage = spLine/8;// Idx就是数组下标dcIdx = (dcCol)+(dcPage)*128;spIdx = spCol+spPage*spFrame->w;// 精灵位置精确到像素,跨越了page,偏移多少要在下个page绘制offset = dcLine % 8;if (offset == 0){if (spFrame->mask != NULL) { dc0[dcIdx] &= spFrame->mask[spIdx]; }dc0[dcIdx] |= spFrame->img[spIdx];}else{// 为了让左移后补上的位是1,取反->左移->再取反if (spFrame->mask != NULL) { dc0[dcIdx] &= (~((~spFrame->mask[spIdx]) << offset)); }// if (spFrame->mask != NULL) { dc0[dcIdx] &= ((spFrame->mask[spIdx] << offset) | (0xFF >> (8-offset)))); }dc0[dcIdx] |= (spFrame->img[spIdx] << offset);// 跨越了page,要在下个page绘制偏移出去的精灵,下个page的数组下标就是dcNIdxdcNIdx = (dcCol)+(dcPage+1)*128;// 选了下个page,需要判断是否超出屏幕范围if (dcNIdx>=0 && dcNIdx < 1024){// 右移无法保证补位是0还是1,干脆就用|填充1if (spFrame->mask != NULL) { dc0[dcNIdx] &= ((spFrame->mask[spIdx] >> (8-offset) ) | (0xFF << offset) ); }dc0[dcNIdx] |= ((spFrame->img[spIdx] >> (8-offset) ) & (~(0xFF << offset))); // 这里是或运算,补0}}}}}}}void clean(){for (size_t i = 0; i < 1024; ++i){dc0[i] = 0;}}
文件名:resources.h
// HERO_IMG1 HERO_IMG2// ████████ ████████// █______█__█______█//_█_██_█_█__█_██_█_█//_█______█__█______█//_█______█__█______█//_█__██__█__█__██__█//_█______█__█______█//_████████__████████//___█_█_______█_█___//__█___█_______█____//__█___█______█_█___//__██__██_____████__0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xC0,0x20,0x20,0x20,0x0,0x10,0xF,\0x0,0x0,0x80,0x40,0x20,0x10,0x8,0xC,0x4,0x2,0x2,0x1,0x1,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x80,0x40,0x60,0x30,0x30,0x8,0x8,0x8,0x0,0x5,0x9,0xA,\0x34,0x4C,0x18,0x20,0xC0,0x0,0x0,0x0,0x0,0x4C,0x83,0x80,0x80,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x60,0x88,0x8,0x4,0x4,0x0,0x0,0x0,0x4,0x3,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x1,0x2,0xC,0xC,0x4,0x2,0x12,0x12,0x20,0xC0,\0x0,0x0,0x0,0x2,0x2,0x2,0x4,0x4,0x8,0x8,0x10,0x20,0x40,0x80,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x80,0x4,0x4,0x4,0x4,0x4,0x4,0x4,\0x4,0x4,0x7,0x0,0x0,0x0,0x0,0xE0,0x8,0x2,0x1,0x0,0x0,0x0,0x0,0x0,\0x80,0x80,0x0,0x40,0x40,0x0,0x80,0x80,0x80,0x40,0x6,0x1,0x0,0xF8,0x0,0xFC,\0x0,0x0,0x80,0x80,0x40,0x40,0x20,0x10,0x18,0x4,0x0,0x0,0x0,0x7,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x80,0x60,0x11,0xD,0x8,0x8,0x8,0x0,0x10,0x10,0x20,\0x40,0x80,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x80,0x40,0x60,0x20,0x10,0x10,0x8,0x8,0x8,0x0,\0x0,0x0,0x0,0x8,0x8,0x8,0x10,0x10,0x20,0x10,0x4,0x2,0x1,0x1,0x0,0x2,\0x2,0x2,0x4,0x18,0x10,0x20,0x20,0x20,0x20,0x20,0x10,0x10,0x8,0x4,0x0,0x8,\0x8,0x8,0x8,0x8,0x8,0x0,0x4,0x3,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x3,0xC,0x10,0x10,0x8,0x4,0x4,0x2,0x0,0x1,\0x0,0x0,0x81,0x41,0x21,0x12,0xA,0x4,0x0,0x0,0x0,0x0,0x0,0x0,0x3E,0x80,\0x0,0x0,0x60,0x18,0xC,0x6,0xC2,0x3,0x0,0x0,0x0,0x0,0x0,0x0,0x80,0x61,\0x1C,0x2,0x1,0x1,0x1,0x1,0x1,0x1,0x11,0xF1,0x18,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0xC0,0x30,0xE,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x1,0x2,0x4,\0x4,0x4,0x8,0x88,0x88,0x90,0x50,0x20,0x0,0x0,0x3,0x4,0x2,0x2,0x1,0x1,\0x0,0x2,0x4,0x8,0x70,0x40,0x20,0x20,0x10,0x10,0x10,0x0,0x0,0x8,0x8,0x8,\0x8,0x0,0x10,0x10,0x0,0x20,0x40,0x80,0x80,0x60,0x10,0x8,0x8,0x4,0x0,0x2,\0x2,0x2,0x2,0x2,0x2,0x2,0x4,0x4,0x8,0x10,0x10,0x10,0xC,0x3,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x80,0x80,0x40,0x40,0x40,0x40,0x40,0x0,0x1,0x2,0x2,0x2,0x2,0xC2,0x22,\0x1C,0x0,0x0,0x0,0x0,0x0,0x0,0x1,0x4,0x18,0x26,0x50,0xB0,0xA0,0x3F,0x10,\0x10,0x10,0x8,0x4,0x4,0x2,0x1,0x0,0x0,0x0,0x0,0x8,0x8,0x8,0x8,0x4,\0x3,0x0,0x80,0x80,0x40,0x20,0x20,0x10,0x8,0x6,0x1,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x1C,0x20,0x42,0x42,0x80,0x1,0x1,0x1,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x3,0x38,0x40,0x40,0x40,0x80,0x80,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x3E,0x41,0x80,0x80,0x0,0x0,0x0,0x0,0x0,\0x10,0x10,0x10,0x3C,0x22,0x21,0x20,0x20,0x20,0x10,0x10,0x10,0x8,0x8,0x4,0xC4,\0xB4,0x8C,0x80,0x40,0x40,0xC0,0x1,0x1,0x2,0x2,0x0,0x4,0x4,0x84,0x84,0x4,\0x4,0x4,0x4,0x4,0x4,0x2,0x82,0x82,0x81,0x1,0x0,0x0,0x0,0x0,0x0,0xC0,\0x18,0x8,0x4,0x4,0x8,0x8,0x8,0x10,0x10,0x0,0x20,0x20,0x0,0x40,0x40,0x40,\0x81,0x82,0x84,0x88,0x90,0xC0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x60,0x20,0x40,0x80,0x80,0x30,0xC,0x3,0x67,0x20,0x10,0xD0,0x38,0x8,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x80,0x81,\0x86,0x98,0xC0,0x80,0x0,0x0,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x0,0x0,\0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x0,0x0,0x0,0x10,0x10,0x10,\0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x8,0x0,0x8,0x8,0x8,0x8,0x8,0x8,0x8,\0x8,0x8,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x10,0x10,0x10,\0x10,0x10,0x10,0x11,0x11,0x11,0x11,0x10,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x60,0xC,0x83,0x40,0x20,0x10,\0x8,0xC,0x4,0x2,0x1,0x0,0x0,0x3,0x1C,0x60,0x40,0x40,0x30,0xE,0x1,0x0,\0x0,0x1,0xC2,0x4,0x8,0x10,0x90,0x9F,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x80,0x80,0x80,0x0,0x40,0x40,0x40,\0x40,0x0,0x20,0x20,0x20,0x0,0x10,0x10,0x10,0x1F,0x10,0x1,0x9,0x8,0x8,0x8,\0x0,0x4,0x6,0x5,0x4,0x4,0x0,0x2,0x2,0x2,0x2,0x2,0x0,0x0,0x1,0x1,\0x1,0x1,0x1,0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x80,0x70,0x0,0x0,0x80,0x40,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x1,0x0,0x0,0x0,0x0,0x0,0x20,0xA0,0x40,0x40,0x7C,0x10,0x30,0x8,\0xEE,0x0,0x0,0x80,0x80,0x84,0x5C,0x64,0x48,0x7,0x23,0x22,0x21,0x11,0x1C,0x10,\0x0,0x8,0x8,0x8,0x4,0x4,0x4,0x4,0x2,0x2,0x2,0x2,0x1,0x1,0x1,0x1,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x80,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x3,0x19,0x2,0x1,0x0,0x1,0x11,0x7,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x80,0x80,0x40,0x40,0x0,0x20,0x20,0x10,0x10,0x0,\0x8,0x8,0x6,0x4,0x4,0x2,0x2,0x2,0x1,0x1,0x1,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x20,0xE0,0xC0,0xC0,0x1E,0x7,0x30,0x10,0xE8,0x1C,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,\0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0}
微信改版,容易错过最新资讯和福利?
快将“安信可科技”设为星标⭐
可以第一时间接收小安的推送!
▼

传输距离达5.1km的高频段LoRa模组,低功耗可达3μA
星闪网卡:Wi-Fi6+SLE+BLE,三模合一Linux网卡
安信可更多产品信息可进入以下链接查阅:
●开发资料:https://docs.ai-thinker.com/
●官方教程:https://blog.csdn.net/Boantong_
●安信可官网:www.ai-thinker.com
●安信可社区:https://bbs.ai-thinker.com
●业务咨询请联系:18022036575


