[1] Braidy, N., et al. (2011). Age-related changes in NAD+ metabolism. Nature Reviews Endocrinology, 7(8), 447-454.
[2] Imai, S., et al. (2019). An Unusual NAD+-Binding Protein, Parp-1, Activates Sir2 Enzymes. Cell, 153(1), 144-153.
[3] Howitz, K. T., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954), 191-196.
[4] Canto, C., et al. (2012). The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metabolism, 15(3), 838-847.
[5] Liu, L., et al. (2018). Nicotinamide Mononucleotide (NMN) supplementation rescues cerebellar ataxia and prevents hearing loss in a 5XFAD Alzheimer's disease mouse model. Redox Biology, 18, 429-437.
[6] Yoshino, J., et al. (2011). Nicotinamide mononucleotide, a key NAD(+) intermediate, treats mitochondrial diseases in mice. Cell Metabolism, 14(4), 555-566.
[7] Verdin, E. (2015). NAD(+) in aging, metabolism, and neurodegeneration. Science, 350(6265), 1208-1213.
[8] Abumrad, N. A., et al. (2013). Metabolic Consequences of Sleep Deprivation. Sleep Med Clin, 8(4), 543-551.
[9] Trammell, S. A., et al. (2016). Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nature Communications, 7, 12948.
[10] Huang, Z., et al. (2017). NAD(+) supplementation normalizes key Alzheimer's features and DNA methylation patterns in APOE4-induced Alzheimer's disease models. Molecular Neurodegeneration, 12(1), 30.
[11] Canto, C., et al. (2018). The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metabolism, 15(3), 838-847.
[12] Someya, S., et al. (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 143(5), 802-812.

