将你在学习大数据时的所见、所得分享给我们,大奖等你来拿。搞笑的、温馨的、正能量的…你也可以是段子手!
活动时间:
2015.10.28——2015.11.06(截止统计时间为11月6日的中午12点)
活动形式:
将你的大数据日常/吐槽评论至本文章(写评论),获赞最多的前15名,即送下列新书中一本。

最后,为大家分享《智能大数据SMART准则:数据分析方法、案例和行动纲领》一书中的小案例,希望能让大家觉得有所收获~
案例研究:Oxygen计划
该计划由人类和创新实验室(PiLab)负责,该实验室是谷歌人类分析团队的一部分。PiLab由一群社会科学家组成,他们经常与学者一道解答谷歌有关长期发展方面的问题。他们处理的问题并不一定是当务之急,但能提升绩效,引发突破。
PiLab经常研究有关生产力、绩效和成功方面等不一定是当务之急的问题。他们的使命是“从事改变谷歌和世界的创新研究”。
谷歌早期流传的一个传说或想法就是经理人没那么重要。作为一家科技公司,人们最渴望的顶级的工作是技术类,而非人力资源管理类工作。事实上,谷歌的联合创始人Larry Page和Sergey Brin(二人都是计算机专业的理工男)非常确信经理人不重要,于是他们省掉了所有的经理岗位,让每人都成为一个独立贡献者。这种做法不甚有效,然后经理人又被请回公司。但是耻辱依旧,人们认为经理人和技术人员相比,并没有做出同等贡献或体现相同的价值。在这样的想法或假设甚嚣尘上的时期,并没有证据显示和技术专业人员相比,人力资源经理究竟创造了多少价值。
因此,PiLab着手研究这样的耻辱究竟是否存在现实依据。于是,他们首先要问:“经理人是否给谷歌带来积极影响?”
首先,他们研究了业已存在的数据:绩效评估和员工意见调查。多数公司从两个角度审视这些数据:自下而上(员工意见调查)和自上而下(绩效评估)。将结果搬到表格上,结果所有的经理看起来差距不大,表现都不错。但图表并没有回答那个问题,即“经理人是否给谷歌带来积极影响?”
为了回答这个问题,他们需要更细致地观察数据,并将数据分块,看看最上面(绩效最好的经理)和最下面(绩效最差的经理)之间的区别。进一步分析以经理领导团队的生产力,以雇员幸福水平和忠诚度为依据,审视绩效最好和最差经理的表现,结果是惊人的。尽管多数经理绩效都差不多,但进一步调查(如回归分析)发现二者在数据统计上的巨大不同。
上述分析回答了那个问题。经理确实重要,他们能给谷歌带来积极影响。
但信息本身不能改变任何事情。于是他们又提出新问题 “谷歌的成功经理人有哪些特质?”
如果PiLab团队将导致差异的问题单独分析,那么这些结论可以帮助步履维艰的经理人自我提高,并为未来的招聘指明方向。他们不知道好的经理之所以好于或效率高于他人的原因是什么。
为此,PiLab进行了两个定性的研究。第一个研究设立了一个最佳经理人奖项,投票人列出被提名者值得获奖的例子即可投票。相关数据进行编码分析,以找出伟大经理人共有哪些重要特质。
同时,他们引入一个双盲访谈试验,受访者是来自公司各个级别的经理,但是经理和采访人并不知道对方属于什么级别。然后,对采访记录进行编码和分析,以发现伟大经理人共有哪些重要特质。
根据数据,他们发现:谷歌最好的经理人的八种行为方式,以及绩效不佳的经理人经常犯的三个错误。
一个伟大的谷歌经理人:
1.是位好导师。
2.对团队授权,不事无巨细地管理。
3.对团队成员的成功和幸福表现出兴趣或关心。
4.有效率,结果导向。
5.善沟通——倾听和分享信息。
6.帮助团队成员取得职业发展。
7.对团队有清晰的目标或战略。
8.具备重要的技术能力以指导团队成员工作。
这八条特质看起来容易,似乎也显而易见。当然,如果你让大多数人列出伟大经理人的特质,这八条应该也位列经常被提及的二三十条特质中。人工分析所做的就是清晰识别对谷歌经理人影响最大的因素。
经理人可能会掉落的陷阱包括:
1.转型困难(例如,突然获得提拔或在几乎毫无培训的情况下得到雇佣)。
2.管理和职业发展过程中缺乏一致的哲学或方法。
3.在管理和沟通上投入时间太少。
这些结论指导了谷歌进一步的行动,对人员进行了有效评估,因此取得重大成功。谷歌施行了自下而上的反馈调查,每个经理的直接下属每年对经理进行两次打分,结果对经理通报。经理需要对薄弱环节进行改善——尤其是八项特质和三个陷阱。谷歌通过设立奖项表彰绩效优秀的经理,对其他经理产生示范作用。
另外,谷歌重新设计了经理培训项目,并建立沟通机制,让员工了解评价领域以及公司内部的最佳实践。
这样,谷歌放弃了“经理不影响绩效”的理念,转而采用数据和评价标准,从统计学角度证明了伟大的经理人对团队绩效、员工忠诚度、流失率和生产力的影响。通过从分析中获得结论,谷歌能够识别并详述出伟大经理人的特质以及哪些因素导致一些经理人的效率低下。对上述因素的不间断评测,并将所得结论融入到公司文化中,在识别伟大和低效经理人方面发挥了预警作用。低效经理人可获得培训,用于支持他向奖项获得者的榜样学习。
正是因为从提出正确的问题开始,不断精炼问题,直到获得能提升总体绩效的实际且可验证的假设,谷歌才在人力资源管理方面获得了如此成功。
当你从问题或假设开始时,只需分析能够解答问题的数据即可,这样你就不会被数据淹没,摆脱收集所有数据的烦恼,让过程变得可控且明智。这就是SMART问题的力量。
谷歌执行主席Eric Schmidt 显然没有忘记一个事实:“我们靠问问题来管理公司,不是靠找答案。所以,在战略流程中,我们已经确立了30个必须回答的问题……要认真问问题,而不是纠结于给出漂亮的答案,这样能促进沟通。”
IDC公司2013年的《数字化宇宙研究》认为,数字化世界中只有22%的数据被选为可分析数据,而实际分析量只有5%。IDC预测,到2020年,备选分析数据量将超过35%,实际分析量超过10%,用以产生真正有用的结论。学会利用最新大数据和分析技术,以及新数据源和数据格式,并将其以SMART的方式运用到业务中,变得越来越重要。这个全新世界中既有机遇,也有挑战。数字世界有许多有用的信息(下一章中会讲到),但找到并利用它们需要真正的智慧、决心和技巧。 如果从战略开始,那么上述愿景便可成为可能。
所以,在新世界里开展新业务前,先从战略开始,明确目标。确定你和你的执行团队理解企业的目标是什么。确定目标后,针对每个SMART面板(客户、财务、运营、资源和竞争)提出四到五个问题。一旦知道在这些关键领域需要了解什么内容后,就可以用这些问题指导相关评价标准和数据的选择。
CDA数据分析师系列丛书读者微信群

回复关键字 看往期精彩~
1001 ☛ 一分钟读懂2015中国数据分析师行业峰会!
1002 ☛ 吴喜之:数据分析和数据挖掘是最大的求职法宝
1003 ☛ 33道Hadoop面试题,看看你能答对多少?(答案在后面)
1004 ☛ 成为首席数据官是一种什么样的体验?
1005 ☛ 超能教程 十分钟学会 Python!


