你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非常重要了。

什么是漏斗分析?
漏斗分析其实很好理解。想象一下你在淘金,把一堆沙子倒进漏斗,最后沉淀下来的才是你想要的黄金。在互联网产品里,用户从进入产品到最终转化,也会像漏斗一样逐步筛选掉一些人。

举个例子:你是一个电商网站的运营,用户购买商品的流程一般是这样的:
1. 访问首页(10000人)
2. 浏览商品(5000人)
3. 加入购物车(2000人)
4. 进入结算页(1000人)
5. 完成支付(500人)
最终只有 5% 的用户完成购买,而 95% 的用户在过程中流失了。这时,漏斗分析就能帮你找出流失最多的环节,并分析为什么用户没有继续往下走。
如何用漏斗分析找到问题?
当我第一次做漏斗分析时,其实也犯过很多坑,比如直接看整体数据,而没有细分不同用户群体,导致结论并不精准。后来,我总结出了一套简单的方法:
第一步:计算关键指标
漏斗分析的核心就是看两个数据:
1
转化率
计算公式:转化率=当前步骤用户数/前一步用户数×100%
例子:如果 5000 人浏览了商品,2000 人加入购物车,转化率2000/5000×100%=40%
2
流失率
计算公式:
流失率=1−转化率
例子:如果 2000 人加入购物车,但只有 1000 人进入结算,流失率就是:
1−1000/2000=50%
计算完这些数据后,就能清楚地看到哪一步流失最严重。
第二步:找出流失最严重的环节
来看下面的数据:


上述图和表告诉我们:
最大的问题出现在"浏览商品 → 加入购物车",流失率高达 60%!
其次是"进入结算 → 支付成功"环节,50% 的人到支付环节还是放弃了。
这意味着,如果能减少浏览后不加购的人,或者优化支付环节,转化率就会大幅提升!
第三步:分析流失的原因
数据只是表象,核心问题还是"为什么用户会流失?" 这就需要结合用户行为来分析。以下是我常用的方法:
查看用户点击热力图,发现很多用户浏览商品页面后就退出,可能是价格太高、折扣不明显,或者信息不吸引人。
解决方案:优化价格展示、增加促销活动、调整页面排版。

用户访谈 + 问卷调查
问用户“你为什么没有买?”很多人会说:
“结算时发现运费太贵”
“担心商品质量,不敢下单”
解决方案:提供包邮选项,增加用户评价,提升信任感。

A/B 测试
让一部分用户看到旧版页面,另一部分用户看到新设计页面,对比转化率。
-
例如,调整购物车按钮颜色或位置,看看是否能提高加购率。

想学习更多AB测试的内容,戳这里【干货】AB test 在业务中的落地应用
如何提升转化率?(核心优化策略)
知道问题在哪还不够,我们还要优化流程,提高转化率!以下是一些实战中验证有效的方法:
1
优化流失最严重的环节
· 发现加购率低?优化商品描述,增加折扣提示。
· 发现支付流失多?提供多种支付方式,减少额外费用。
2
个性化用户体验
· 依据用户历史行为,推荐相关产品,提高购买意愿。
3
制造紧迫感
· 限时折扣、低库存提醒,让用户更快下单。
4
简化操作流程
· 如果用户结算环节繁琐,可以改成“一键下单”或“快捷支付”。
Netflix 个性化推荐案例
Netflix作为流媒体平台,用户从注册到观看内容的过程肯定有几个关键阶段,比如注册—选择套餐—首次登录—浏览内容—开始观看等。每个步骤都可能存在用户流失,所以需要详细拆解。

这种时候,漏斗分析就是最好的工具。它可以帮你找到流失的关键环节,优化产品体验,提高转化率。网飞Netflix通过收集和分析大量用户数据,包括观看历史、评分、搜索记录和观看时长,发现如果能一次性找到多个感兴趣的剧,用户的流失率就会特别低。通过优化算法,网飞精确地预测用户可能感兴趣的内容,从而提供个性化推荐。

例如,网飞能够根据用户观看某一类型的剧集而推荐更多同类型的内容,甚至能够预测用户在某个时间段可能想看的内容类型。通过这些数据,网飞还优化了用户界面设计,让用户更容易找到自己喜欢的内容。
例如,如果用户花很多时间观看《The Ritual》,《The Babysitter》或《Apostle》等恐怖电影时,则Netflix会推荐类似的电影,几乎不会推荐喜剧电影,因为根据用户以往的浏览数据,用户兴趣不大。

除此之外,Netflix还使用观看时间段作为重要变量来向客户推荐节目。意思是,当用户在深夜登录时,Netflix平台将推荐时长较短的节目或是用户已经看了一大半的节目,而不是推荐时长较长的节目。
资深数据分析师的漏斗分析“压箱底”建议
漏斗分析不仅仅是一个工具,更是一种思维方式。它能帮你精准拆解用户行为,找到流失的关键节点,让你的优化有理有据,而不是凭感觉拍脑袋决策。
在多年的数据分析实战中,我总结了以下几个关键建议,这些是很多新手分析师容易忽略的,但却是高手和普通分析师之间的分水岭:
1. 盲目关注“整体转化率”,
而忽视细分人群
不要只看平均转化率,它会掩盖真正的问题。不同渠道、不同用户群体的转化率差异可能非常大。
例如:
你可能发现广告投放的用户加购率很高,但最终支付转化率很低,说明他们可能是冲着折扣进来的,购买意愿不强。
你可能发现老用户的流失主要发生在支付环节,而新用户更早就流失了,这说明两者的优化策略要完全不同。
高手做法:拆分不同用户群体,计算各自的转化率,找出问题的真正来源。

2. 转化率提升不是“拍脑袋改一改”,
而是科学实验
很多团队在做优化时,喜欢拍脑袋决策:“这个按钮颜色改成红色会不会好一点?”、“结算页是不是应该再简化一些?”……
但真正有效的方法,是基于数据进行 A/B 测试。
把用户随机分成两组,一组看到原始版本,另一组看到修改后的版本,然后对比它们的转化率变化。
只有当数据显著表明新版本表现更好时,才值得全面上线。
高手做法:每次改动前,先设定假设 + 设计实验 + 分析数据,确保每一次优化都是基于证据的。

3. 发现“漏斗口太小”?
别只想着优化页面
有时候,你会发现即使优化了漏斗的某个环节,整体转化率还是上不去,这可能说明你盯错了地方。
漏斗的最底层可能并不是问题的根源,而是漏斗上游出了问题。
例如,用户在支付环节流失过多,可能并不是支付方式的问题,而是他们本来购买意愿就不够强。
这时候,你要思考:
是不是产品的定价策略不合理?
是不是营销吸引的用户不够精准?
是不是用户信任度不足,导致他们最后一刻放弃?
高手做法:回溯整个用户旅程,找到真正影响转化的深层因素,而不是只修修补补某个环节。

4. 数据会说话,
但用户的声音更重要
数据能告诉你“用户在哪一步流失了”,但数据不会告诉你“他们为什么流失”。
很多数据分析师只关注数字,却忽略了用户的心理。
最直接的方式是去问用户,收集他们的反馈,比单纯看数据要有价值得多。
比如,曾经我们在分析一个 SaaS 产品的免费试用转化率时,发现试用后购买的比例远低于行业平均水平。数据分析了一圈后,我们直接给试用用户发了问卷,发现他们最大的问题竟然是“不知道试用期什么时候结束”,所以就拖着没买。

解决方案?在试用到期前主动提醒,并附上折扣,转化率瞬间提升 20%!
高手做法:数据分析+用户访谈结合,才能真正找到问题的根本原因。
5. 漏斗分析不是一次性的,
而是一个持续优化的过程
漏斗分析不是做一次就完了,而是一个持续优化的迭代过程。今天你找到了最大的问题,优化了,转化率提升了。但用户习惯、市场环境、竞品策略都在变化,你的漏斗表现也会不断变化。
定期复盘数据,持续优化,才能让你的业务长期保持增长。
高手做法:每个月都回顾一次漏斗数据,记录优化措施和效果,并制定下一个优化目标。

最后的最后:漏斗分析,不只是数据,而是业务增长的关键
如果你真的想在数据分析这条路上走得更远,记住——漏斗分析的终极目标,不是生成一张好看的图,而是推动业务增长。对于数据分析来说,业务分析是最重要的,所以是CDA数据分析师一级的重要考点,CDA认证小程序里有很多模拟题,大家可以通过刷题来提升自己。


为什么选择这门课程?
担心自己专业不对口,难以入门数据分析?CDA数据分析脱产就业班专为零基础人群设计,精心打磨的课程体系巧妙化解专业壁垒。无论你是文商科背景,还是零基础小白,都能轻松上手。课程从基础概念、工具操作到业务逻辑,逐步深入,带你稳步踏上数据分析学习征程,实现从数据小白到数据精英的华丽蜕变。
师资团队汇聚学界、实务界的专家讲师、企业资深分析师和行业大牛,代表着国内数据分析培训的顶尖水平。他们不仅拥有深厚的理论知识,还具备丰富的实战经验,能将晦涩的理论知识融入实际案例中讲解,让你轻松理解。在学习过程中,以问题为导向,引导你深度思考,提升解决复杂问题的能力,培养敏锐的数据思维和扎实的数据素养。
课程内容紧密贴合行业需求,渐进式地涵盖了数据分析所需的各类工具及编程语言,如Excel、SQL、Python、PowerBI等。通过大量实际案例和行业数据,带你深入学习常用分析技能,确保你学完就能在零售、电商、金融等多行业多场景中独立完成数据分析工作。同时,课程还从职场综合能力要求出发,为你提供职业规划指导,帮助你选择适合自己的职业发展路线,快速提升岗位匹配度,实现从校园或原岗位到数据分析岗位的无缝对接。
讲师团队

课程内容介绍
基础夯实阶段
-
工具与思维预备:预习阶段提供Excel、数据库、PowerBI等工具的预习视频,帮你提前熟悉工具操作。业务前台人员数据思维训练营则培养你的数据思维,为后续学习打下坚实基础。 -
Excel数据分析进阶:深入学习表格结构数据的处理技巧,掌握各类指标的应用、设计与分析,学会运用帕累托分析法、四象限分析法等业务分析方法,以及价值模型、漏斗模型等业务模型。 -
业财融合与财务数据分析:了解业务和财务的紧密联系,熟悉三大财务报表指标,学会资产负债分析、利润分析和杜邦分析,完成财务分析报告。
技能提升阶段
-
统计学与多维数据分析:系统学习统计学基础,涵盖描述性统计、统计分布、推断性统计等知识,学会运用ABtest分析运营方案。 -
数据库与数据管理:深入学习SQL数据库,掌握数据定义、操作、查询语言,学会单表和多表查询,运用各种函数解决实际问题。 -
Python编程与应用:从Python编程基础学起,掌握数据类型、语法规则、控制流语句和自定义函数。深入学习Numpy数组分析、Pandas数表分析和数据清洗。
高级进阶阶段
-
数据挖掘与机器学习:学习数据挖掘基础内容,掌握相关分析、线性回归、逻辑回归等统计建模方法,了解模型评估和正则化技术。 -
深度学习与人工智能:探索深度学习之神经网络、AIGC生成式人工智能路线图,了解编码器、迁移学习和Transformer架构,掌握GPT技术架构与训练方法。
实战与就业保障阶段
-
大型项目实战:参与跨国企业完整数据分析实战案例,在项目现场专家的评审与1V1指导下,进行探索性实操,制作分析报告。 -
精准营销数据分析全流程实战:以实战案例为依托,全流程掌握精准营销数据分析方法,提升解决实际业务问题的能力。 -
职业发展与就业服务:数据分析师职业规划课帮助你明确职业目标,提升职场沟通力和团队协作力。面试技巧一对一辅导为你量身定制面试策略,修改简历,增加面试成功率。
适合谁学习?
-
应届毕业生:专业冷门面临就业压力、缺乏经验没有明确规划、技能缺失导致职场竞争力低的应届毕业生,CDA数据分析脱产就业班为你提供系统学习和实践的机会,掌握热门技能,在就业市场中脱颖而出。 -
在职提升和转岗人群:对于工作任务繁重,希望提高工作效率的财务、市场等人员,以及竞争压力大,想要突破职业瓶颈的产品、运营等人员,还有面临行业挑战,期望提升战略思维的决策、管理人员,学习数据分析技能能为你的职业发展注入新的活力,开启新的职业篇章。 -
转行数据分析人群:自学难度大的零基础人员、升职加薪困难想要跳槽大幅涨薪的人员,以及所在行业不景气,渴望进入新兴数据行业的人员,该课程是你快速入门和实现职业转型的最佳选择。 -
CDA报考人群:无论是报名参加CDA Level I、Level II还是Level III等级考试的考生,课程内容紧密围绕CDA考试大纲,帮助你高效备考,顺利拿证,提升在数据分析领域的专业认可度。
立即报名,开启你的数据分析之旅!
往期干货文章:
《CDA一级教材》电子版上线CDA网校,助你轻松拿下一级考试!
【干货】月薪25K的数据分析师不会告诉你的秘密:7个让业务翻倍的分析方法
【教程】30000字长文,手把手教你用Python实现统计学
【干货】数据可视化很难?不存在的!一文弄懂PyEcharts可视化技术
【干货】用半监督学习方法处理标签(上)Label Propagation
【干货】掌握这50个常用Excel函数,你的Excel就无敌了

