很久没有更新文章了,很多粉丝也在不断地催更,之所以一直没有更新,一方面不想因为更新而更新,这样出来的内容质量也不高,另一方面,我公众号的文章都是按照系列更新的,并不是零散的知识点,这样更便于大家系统地查看,如果大家有看过,应该注意到,到目前为止,我已经更新了【初识数据分析】、【数据分析思维】、【数据分析工具】、【数据分析统计学】、【数据分析面试宝典】、【机器学习】等6个系列,所以我也一直在思考,接下来和大家聊一聊哪些话题、写哪个系列。
不知道大家有没有类似的经历?有没有曾经因为追求高端的算法和工具而没有及时交付最终的业务结果,最后被老板一通批评;有没有拿着一个单点的数据分析结果就给出了一个全面的结论和建议;有没有给过一些因果倒置或者“幸存者偏差”的结论,导致业务走了弯路。
这些经历大家多多少少都会遇到,为什么会犯这些错误?因为我们缺乏了一些基本的数据分析思维。刚好最近一直在拜读郭炜的【数据分析思维课】,讲地很好,内容深入浅出,很接地气。我们很多人缺乏的不是数据分析的理论,而是在实际场景中应用理论的能力,理论+实际场景=方法论,如何把看似浮在空中的理论落地到实际的工作场景中来,就需要通过简单易懂的案例和近似白话的语言传达出来,这也是为什么会有【白话数据分析】这个系列的原因。无论你是什么阶段什么水平,我们从生活/工作中最常见的案例出发,用最直白的文字把理论讲清楚,真正掌握数据分析的基本思维和原理,这也是写这个系列文章的初衷。
因为是白话,所以在这个系列文章中,没有晦涩难懂的公式和复杂的程序,我只是希望用大白话的形式,结合工作和生活中的各种各样的例子,学会怎样从数据分析的角度来解决这些问题,掌握一些数据分析最基本的知识。放我们再看待同一件事情的时候,思路和以前不一样了,可以从数据的角度来诠释身边发生的事情,用数据的思维来做出你的判断。

大数定律是由瑞士数学家雅各布·伯努利提出的,维基百科给出的定义是:概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。偶然中包含着某种必然。
总结一下这一部分聊的内容:“大数定律”和“赌徒谬误”。
大数定律说的是只有当随机事件发生的次数足够多时,发生的频率才趋近于预期的概率。对于一件事情,我们需要持续不断努力,才可以达到期望值,成功只有一种定义,那就是面对每次失败后的长期主义。
而“赌徒谬误”则告诉我们,每个事件都是独立的事件,“否极泰来”需要足够多的次数才可能出现,做事情要少一些“赌徒心态”,多一些平常心,不要盲目跟风和下注才能获得最后的成功。
往期精选
end


