大数跨境
0
0

Python Kite 使用教程 轻量级代码提示

Python Kite 使用教程 轻量级代码提示 数据皮皮侠
2020-07-22
1
导读:1: 概述今天升级annacoda 插件 spyder (4.0.0 )的时候 提示安装kite ,这是


 1: 概述

今天升级annacoda 插件 spyder  (4.0.0 )的时候 提示安装kite ,这是什么玩意? 下载下来试一试? 原来:就是一个代码提示插件..

说白了" 就是让开发者 在轻量级编辑器环境下 有一个高端的代码提示环境  "

https://kite.com 官网 

Kite 使用教程

Kite 安装教程

 2 安装

 下载链接 :https://kite.com/download/ 

提供 Install for macOS or Linux win 三大版本支持 

编辑器: Available for Atom, PyCharm, Sublime, VS Code, and Vim. 

注意: 默认是安装在C盘 ,不会给你选择安装盘符的选项

安装完成后: 输入你的邮箱 进行绑定注册

 

 

 进入插件选项,选择 你使用的编辑器插件,,这里我安装了 pyecharm

 

 

 3: annacoda 环境配置

   Preferences > Completions and linting > Completion 下面打上√

 

 

Preferences > Completions and linting > Advanced > Enable Kite (if the Kite engine is running) 打上√

 

 

上面完全设置好了以后 :  spyder 下标栏 出现kite

 

下面写一段代码试一试:

import numpy as np

print(np.random.randint(1,100));

 

 

 4: 其他使用姿势

查询某个模块的使用方法:

 

 

 

假设 查询 numpy 使用方法: 方法很详细 

 

SIGNATURE

low,
high
=None,
size
=None,
dtype
='l'
RETURNSint
| ndarray
HOW OTHERS USED THIS
randint(low, high)
randint(low)
randint(low, high, size)
randint(low, size)
randint(low, high, size)
DOCUMENTATION
randint(low, high
=None, size=None, dtype='l')

Return random integers
from `low` (inclusive) to `high` (exclusive).

Return random integers
from the "discrete uniform" distribution of
the specified dtype
in the "half-open" interval [`low`, `high`). If
`high`
is None (the default), then results are from [0, `low`).

Parameters
----------
low : int
Lowest (signed) integer to be drawn
from the distribution (unless
``high
=None``, in which case this parameter is one above the
*highest* such integer).
high : int, optional
If provided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if ``high=None``).
size : int
or tuple of ints, optional
Output shape. If the given shape
is, e.g., ``(m, n, k)``, then
``m
* n * k`` samples are drawn. Default is None, in which case a
single value
is returned.
dtype : dtype, optional
Desired dtype of the result. All dtypes are determined by their
name, i.e.,
'int64', 'int', etc, so byteorder is not available
and a specific precision may have different C types depending
on the platform. The default value
is 'np.int'.

.. versionadded::
1.11.0

Returns
-------
out : int
or ndarray of ints
`size`
-shaped array of random integers from the appropriate
distribution,
or a single such random int if `size` not provided.

See Also
--------
random.random_integers : similar to `randint`, only
for the closed
interval [`low`, `high`],
and 1 is the lowest value if `high` is
omitted. In particular, this other one
is the one to use to generate
uniformly distributed discrete non
-integers.

Examples
--------
>>> np.random.randint(2, size=10)
array([
1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a
2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[
4, 0, 2, 1],
[
3, 2, 2, 0]])
Jump toDESCRIPTION

 

 缺点: 我发现国内的某些库 不支持 , 支合适那些 开源库 很大的

 

 

主题设置:

 

 

 


感谢您的阅读,如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮。本文欢迎各位转载,但是转载文章之后必须在文章页面中给出作者和原文连接

作者:---dgw博客

出处:https://www.cnblogs.com/dgwblog/p/12001232.html

版权:本文采用「署名-非商业性使用-相同方式共享 4.0 国际」知识共享许可协议进行许可。

【声明】内容源于网络
0
0
数据皮皮侠
社科数据综合服务中心,立志服务百千万社科学者
内容 2137
粉丝 0
数据皮皮侠 社科数据综合服务中心,立志服务百千万社科学者
总阅读615
粉丝0
内容2.1k